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Abstract-An equation has been theoretically derived for the effective thermal conductivity of a medium with 
an&diametric particles. The case of the thermal conductivity of particles being much in excess of that of the 
binding medium is analyzed in detail. The possibility is shown for the particle shape parameters to be 
determined from the dependence of the effective thermal conductivity on the filler volume fraction. The 
effective thermal conductivity of solutions filled with metallic powders differing in nature and dispersivity has 

been studied experimentally. The predicted results agree satisfactorily with the experimental data. 

A”, depolarization factor ; 
a, b, c, ellipsoid semi-axes ; 
c er effective metal volume fraction ; 
ci3 volume fraction of particles of ith kind ; 
G temperature gradient in the medium far 

from a particle; 

Ii, first invariant of the particle polariza- 

bility tensor; 

k particle shape factor ; 
N, number of species of particles; 

No, number of measurements; 

P9 significance level ; 

Pi* particle dipole moment ; 
rr position vector ; 

;. 
r.m.s. variance ; 

d9 

particle surface ; 
surface bounding the volume Voi; 

QSN,), Student number ; 

T,, temperature of the binding medium; 

T,, temperature of dispersed particles; 

TO temperature of reference medium; 

AT,, AT,,, probe temperature variation in refer- 

ence and studied medium, respectively; 

V, volume of the system containing suf- 

ficiently large number of particles; 

Vf, bulk powder volume; 

vi7 particle volume ; 
voi, volume of the system containing the ith 

particle. 

NOMENCLATURE 

Greek symbols 

UC, particle polarizability tensor 

components ; 
1 tl, thermal conductivity of binding 

medium ; 
1 d, thermal conductivity of dispersed 

particles ; 

effective thermal conductivity of the 

system ; 
thermal conductivity of filled solution ; 
thermal conductivity of reference 

medium ; 
thermal conductivity of solution ; 
thermal conductivity of the medium 

studied; 

bulk powder density ; 

metal density; 

solution density. 

1. INTRODUCTION 

COMPOSITIONS based on resins or other viscous media 

with fillers (highly dispersed metal powders) are being 

widely used in different branches of engineering. The 

objective of this study was to determine the de- 

pendence of the effective thermal conductivity of such 

suspensions upon the content of the filler whose 

thermal conductivity differs substantially from that of 

the medium. The results obtained can be used for both 

estimation of the thermal conductivity of metallic 

powders from their composition and preparation of 

suspensions with a specified thermal conductivity. The 

relationship between the thermal conductivity of a 

suspension and its composition can also be used to 

determine the filler content in suspension. 

The dispersion medium of the composition studied 

was a viscous solution of polyisobutylene in kerosene 

which precluded filler sedimentation. The fillers were 

highly dispersed metal powders differing in dispersivity 

and the shape of particles. In concentrated solutions of 

polymers in hydrocarbon solvents filled with metallic 

powders, sedimentation is extremely slow due to a high 

viscosity of the solution. Therefore the composition 

can be considered uniform and isotropic. An increase 

in the volume concentration of metal leads to for- 
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mation by metallic particles of a branched net-like 
structure actually throughout the entire composition 
volume. In this case the dispersed system can be 
considered conveniently as consisting of two mutally 
penetrating components: solution and metal. The 
properties of such systems are treated in detail in [ 11. 

At relatively moderate volume concentrations of the 
filler the composition consists of the binding medium 
(solution) and randomly distributed metallic in- 
clusions [l]. Although the ihermal conductivity of 
metal surpasses that of the solution by several orders of 
magnitude, the effective thermal conductivity of the 
system, at small concentrations of metallic powder, 
depends solely on the nature of the filler, i.e. volume 
content, dispersivity etc., but not on the nature of the 
metal itself. Usually the powder particles are covered 
with an oxide film, the thermal conductivity of which is 
1; or 2 orders of magnitude higher than that of the 
binding medium. The screening effect of the envelope is 
small and may be neglected, as shown in [2]. For the 
same reason, variation of the heat conduction coef- 
ficient in the boundary layer of the polymer adjacent to 
the particle may also be ignored. 

In liquid polymer compositions the powder par- 
ticles may form flocculi consisting of several par- 
ticles-the phenomenon which is conditioned by 
the aggregation process. The nature of formation and 
the size of flocculi have been studied in a number of 
works [3-53. It should be noted that formation of 
aggregates is accompanied not only by a change in the 
anisodiametric nature of inclusions, but by manifes- 
tation of the following factor: the volume fraction of 
particles in the aggregate exceeds the mean fraction of 
dispersed phase. It has been shown in [6] that this 
factor is important only in the case when the dispersed 
phase volume concentration exceeds 25%. 

2. CALCULATION OF THE EFFECTIVE THERMAL 
CONDUCTIVITY OF SUSPENSION 

In order to calculate the effective thermal con- 
ductivity of a liquid polymer medium with a metallic 
filler, consider a homogeneous system with the thermal 
conductivity 1, containing randomly oriented aniso- 
diametric inclusions with the thermal conductivity E., 
>> 1,. The effective thermal conductivity of similar 
systems has been determined in a number of works 
[7-91 for a wide range of the filler volume con- 
centrations by isolating a unit cell from the system and 
making calculations for it. 

There is also a statistical method for the solution of 
this problem. The effective thermal conductivity of 
composition is then determined from 

I,(VT) = I&VT,) + d,(VT,) 

and 

(VT) = (VT,) + (VT,). (1) 

Here T, and T, are the temperature fields in the 
medium and in inclusions, the angled brackets denote 
averages over the system volume. The temperature 

fields are found from the solution of the Laplace 
equation 

V’T, = V’T, = 0 (2) 

subject to the boundary conditions 

T&r = TdIpUrr; &VT, .n(,,,r = &VT, .n],,,r, 

(3) 

where n is a unit vector normal to the surface. 
Let us rearrange equation (1) by means of the 

formulae 

where 1/ is the composition volume, l/,i the volume 
containing the ith particle only, Soi the surface bound- 
ing this volume, Vi, Si is the volume and surface of the 
ith particle, respectively. 

Equations (2) and (3) yield 

01 

[r(VT, . dS) - T, dS] = y $ T, dS 
b S. 

where r is the position vector. Then, with account for 
the above expressions we shall obtain for (1) 

(‘i - lb) 

= -‘b; [T, dS - r(VT dS)]. (4) 
0, 

When the content of particles is small, then, to 
evaluate the integrals over the surfaces Soi at a distance 
from the particle, we shall restrict ourselves to the 
dipole expansion of the field T, 

T =_G.r+Pi 
b 

13 ’ 

where pi is the dipole moment of the inclusion 
determined from equations (2) and (3) subject to the 
boundary condition 

V&I,,, -+ -G. 

Since the thermal problem is linear, then 

pi = Vi i atje,. 
k,n= 1 

(6) 

where af is the particle polarizability tensor [lo], e, 
are the unit vectors. 

Taking into account the random orientation of 
particles 

(cos’ a) = (cos’ p) = (cos’ y) = k, 
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where or, & y are the angles between the principal axes 
of the inclusion polarizability tensor and the tempera- 
ture gradient, will yield 

Here, the summation is taken over the N types of 
inclusions, cj is the volume concentration of the jth 
inclusion, 

k=l 

is the first invariant of the tensor akk : Ij > 0 at 1, > A,; 
Ij < 0 at I, < A,,, When ;ld >> a, and 1, CC &, thevalue 
of lljl is independent of I, and is determined only by 
the shape of inclusions. At N = 1, equation (7) is 
reduced to the Maxwell-type relation 

a -a, 
L=kc, k=$, 
& + 21, 

in which c is the volume content of particles. 
The coefficient k allows for non-sphericity of a 

particle. Equation (8) holds also for inclusions of the 
same nature but of different shape. In this case the 
averaged polari~bility tensor invariant is equal to 

I = i PiI, 

where pi are the fractions of particles of dissimilar 
shapes. For particles of ellipsoidal shape the polariz- 
ability tensor is presented in [lo] 

k=i i Ad - Jb 
9.=, I,+(&-I&,’ 

(9) 

where A,, are the depolarization factors. For spheres 
with A, = $ the well known Maxwell formula is 
obtained : 

Equation (8) with the coefficient (9) coincides with a 
similar equation for dielectric penetration obtained in 
[ll, 123 where the mutual effect of particles is accoun- 
ted for by the Lorentz formula for interaction of 
induced point dipoles. The technique of deriving 
equation (8) used in the present work makes it possible 
to avoid application of the comparison method em- 
ployed by Polder, Van Santen and Fricke. In the 
derivation of equation (8) it is assumed that the centres 
of inclusions are uniformly distributed throughout the 
composition and, therefore, the form of the correlation 
function for mutual arrangement of particles is not 
taken into account. Buevich and co-workers [13] have 
developed the methods for calculation of the effective 
characteristics of composition--viscosity and thermal 
conductivity-with regard for the binary function of 
inclusions. Numerical calculations made for spherical 
particles [14] have shown that the effective thermal 
conductivity of composition at c 6 0.3 is weakly 

dependent upon the form of the binary distribution 
function. 

Based on Fricke’s equation [15] for a dispersed 
medium with ellipsoidal inclusions, 

[k(l - A,) - &A,], 

(10) 
Hamilton [ 16] has suggested an empirical relationship 
for thermal conducti~ty of the medium with inclusions 

A, - lb ‘d - & 

&+(n- 1)Ab =C~Id+(n-l)a, 
(11) 

where n is the empirical coefficient accounting for the 
anisodiametricity of inclusions. An equation similar to 
(11) is used to calculate the electrical conductivity of 
liquid disperson systems [17], with n determined from 
experimental data. For 1, CC 1, and 1, >> Lb we have 

& - I, c 

ae+(n- 1)1, = 
- - 

n- 1’ 
a, c-c a, ; 

& - Lb 

&+(n-l)Ab=C’ 
Ad >> A,. 

Comparison of equations (8) and (12) with the 
Maxwell formula shows : 

a -a, e = c, a, + 21, 
a, >> a, 

a, i< a,. 03) 

It is seen from (8) and (13) that in (8) anisodia- 
metric&y leads to a change in the effective volume 
fraction of anisodiametric particles by k titneS at & D 

Ab and by 2k times at Ad c db as compared with similar 
volume content of spherical inclusions. In equation 
(12), in contrast to (8), an increase in the effective 
thermal conductivity of the composition involving 
anisodiametric particles, as compared with the same 
content of spherical particles, is associated with a (n - 

l)/Zfold increases in the effective thermal conductivity 
of the medium at Ad >> R,, while at 1, CC &--also with 
an (n - l)/Zfold decrease of the effective filler volume. 
Physically this interpretation is incorrect. 

In the case of randomly oriented inclusions their 
shape can be modelled by an effective axisymmetric 
ellipsoid. The coefficient k is determined by equation 
(8) from the experimental data. Then, with the use of 
equation (9), one can determine the relationship 
between the ellipsoid semi-axes. The depolarization 
factors A, can be calculated from [lo] : 
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A _1+e2 - I e3 (e 
- arctg e), 

e= 

b =c>a. (14) 

Here b, a, c are the ellipsoid semi-axes, A, = (a - 

A,)/29 A3 = A,. 

Figure 1 shows the dependence of the coefficient k 
upon the ellipsoid shape for different relationships 
between thermal conductivities of the dispersed, &,, 
and binding, A,, media. 

The study of the effect of the shape of inclusions on 
polarizability has been carried out in [17]. The 
experiments have shown that polarizability is de- 
termined, in the main, by the relationship between the 
length of the particle axes rather than the particle 
shape. 

The author of [18] has suggested that the re- 
lationship between the semi-axes of an equivalent 
ellipsoid be determined by measuring dielectric per- 
mittivity of the dispersion system. 

3. ANALYSIS OF EXPERIMENTAL DATA 

Thermal conductivity of filled polymer compositions 
has been measured by the constant-power probe 
method [20-22) in view of certain features of the 
system under study: high viscosity, poor wettability, 
slow structure formation processes in the medium. The 
probe in the form of a thin needle was immersed into 
the medium. After turn-on of the heater a change of the 
probe temperature in time has been recorded. The 
measurements are made over a quasi-stationary heat- 
ing length. A relative version of this method is used 
when the rates of heating of two identical probes 
immersed into the studied and reference media are 
compared. Identical electric power is supplied to the 
probes. The ratio between the thermal conductivities 
of the medium studied A,, and of the reference medium 
;C, is determined from 

W) 

where AT, and AT,, are temperature changes in the 
reference and studied media. For optimization of the 
measurement technique the thermal conducti~ties of 
hydrocarbon liquids thickened with 5.7 and 15% of 
polyisobuthelene (PIB) have been determined. The 
reference medium was a pure solvent. The confidence 
interval for the thermal conductivity I was determined 
[19] from 

X-c,(N,-l)S<I<~+r,(N,-IfS, 
JN, JNO 

(a) 

6.0 

-lO- 

-1.2 - 

- 1.4 - 

-16- 

-18- id=0 
Xb 

FIG. 1. Dependence of the coefficient k upon the shape of 
ellipsoid for different thermal conductivity ratios of dispersed 

A, and binding A,, media. 

where 

N,, t,WJ 

is the Student number for the significance level p = 
0.05 for N, measurements, s is the r.m.s. variance. The 
analysis of the preliminary experiments and statistical 
treatment of the results obtained allowed the develop- 
ment of the technique of thermal conductivity 
measurement. The measurements have shown that the 
thermal conductivity of the solution is actually inde- 
pendent of the PIB content (c = 5x, /r = 
0.114 Wt/MK, c = 7”/ 1, = 0.112 Wt/MK, c = 15x, 
& = 0.112 Wt/MK) which is in accord with the 
reported data proving near coincidence between the 
thermal conductivities of pure solvents and PIB 
[27, 281. 
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Table 1. Characteristics of powders 

pm.lo-J Pr.10--3 Vr(cms) c c, 
No. k/m’ k/m” PJPf min max min max min max 

1 1.74 0.58 3.28 12.8 89.8 
2a 2.15 0.69 3.12 13.5 80.9 
b 1.10 1.95 10.0 60.0 

3a 2.14 0.15 3.65 12.6 25.2 
b 0.80 3.43 18.8 61.5 

: 0.95 1.18 2.88 2.32 15.8 10.0 53.0 50.2 
4 2.14 0.18 15.22 10.0 276.0 
5 5.25 0.55 9.54 10.0 12.7 

0.037 0.324 0.049 0.453 
0.042 0.350 0.121 0.394 
0.049 0.491 0.065 0.448 
0.056 0.126 0.034 0.095 
0.056 0.245 0.013 0.242 
0.056 0.254 0.034 0.258 
0.042 0.328 0.026 0.284 
0.006 0.244 0.088 0.670 
0.009 0.102 0.016 0.097 

The above technique has been used to measure the 
thermal conductivity of solutions filled with metallic 
powders. The solutions were hydrocarbon liquids, 
with close thermal conductivities, into which 10% of 
PIB had been added. The powders were : (1) milled 
magnesium ; (2) two fractions of the aluminum- 
magnesium alloy; (3) four fractions of spherical alu- 
minum ; (4) aluminum powder, and (5) gamma-iron 
oxide (Table 1). The granulometric composition of the 
powders is presented in Fig. 2. The densities of 

(a) 

60- 

I I I I I 1 
0 2 4 6 8 IO 12 14 I6 1820222426 28 30 

(c) 
36 

34 

32 

30 

FIG. 2. Granulometric 

solutions are almost the same and equal to p, = 
900 kg/m3. The measurements were carried out for 
different bulk volumes I/, of powders per 0.1 kg of 
composition. The volume content of metal is found 
from 

(PflPnJ Vf 

c = (PflPm)V, + (0.1 - PrV,YP.. 
(16) 

Here pr is the bulk density of powder and p, is the 

(b) 

I3 
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0 IO 20 30 40 50 60 

106m 

composition of powders: (a) magnesium; (b) magnesium 
aluminum powder (solid line); 2, spherical aluminum. 

with aluminum; (cl 
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metal density. The effective volume content of metal is 
calculated from the experimental data by 

(VU - 1 c, = 
@f/4) + 2 

where I,/& is the ratio of thermal conductivities of the 
filled, A,, and pure, i,, solutions. The value of c, is 
numerically equal to the volume fraction of well 
conducting particles (&/L, >> 1) the addition of which 
results, according to (8), in the value of Jr/l, de- 
termined experimentally. 

Table 1 presents the densities pr, pm and ranges of 
values VI, c, c, observed in experiments. The re- 
lationship between the quantities c and c, is described 
by the regressive equation 

c, = n + mc. (18) 

In view of the fact that the Maxwell formula is 
applicable to spherical particles at small volume 
contents of the dispersed phase, the linear equation 
(18) for aluminum powder was obtained from the data 
for c, 5 0.35. Over the whole range of experimental 
data the quantities c, and c are related through 

c, = 0.049 + 4.568~ - 8.284~~. 

Further analysis of the significance of coefficients n, 

m [ 191 in equation (18) has shown that the free term n 
can be neglected, i.e. an equation of the type (8) can be 
obtained 

c, = kc. (19) 

Figure 3 shows the curves of (19X experimental 
points and the values of the coefficient k for mag- 
nesium, aluminum and gamma-iron oxide. 

All of the above compositions consist of two com- 
ponents: solution and powder of one metal. We have 
analyzed the possibility for calculation of the effective 
thermal conductivity of the system consisting of three 
components : solution, aluminum powder and 
gamma-iron oxide powder. The thermal conductivity 
has been calculated by equation (17) at 

c, = c;.k; + c,,k,,, (20) 

where c;., cA, are the volume contents of the gamma- 
iron oxide and aluminum powder, k7 and k,, are their 
coefficients. The results of calculations prove the 
applicability of this equation (see Table 2). The 
experiments carried out confirm the applicability of 
equations (17) and (20) for determination of the 
effective thermal conductivity of polymer solutions 
filled with metallic powders at volume contents c, 5 

(d) 

FIG. 3. Dependence of C, upon C: (a) magnesium, k z 1.294; (b) aluminum-magnesium, k z 0.952; (c) 
spherical aluminum, k z 0.960; (d) aluminum powder, k r 5.268; (e) gamma-iron oxide, k z 1.000. 
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Table 2. Three-component system (IQ+ = 1.00, kA, = 4.11) 

No. CFe, CA1 
pw 

e 
Cyd 

1 0.0101 0.0127 0.0566 0.0630 
2 0.0213 0.0134 0.0567 0.0776 
3 0.0332 0.0069 0.0446 0.0637 
4 0.0337 0.0141 0.0991 0.0938 
5 0.0342 0.0214 0.1525 0.1245 
6 0.0168 0.0073 0.0566 0.0799 
7 0.0175 0.0149 0.1045 0.1118 
8 0.0483 0.0227 0.1573 0.1446 
9 0.0630 0.0158 0.1279 0.1320 

10 0.1641 0.0241 0.1620 0.1670 

0.35. In the case of powders 2,3,5, with particles close 
in shape to the spherical one, k z 1. 

Figure 4 shows the photographs of the powder 
particles of magnesium, aluminum-magnesium alloy, 
tirst fraction of spherical aluminum and aluminum 
powder. The magnesium particles are of distinct 
anisodiametric nature (Fig. 4a). The coefficient k 
calculated from the experimental data is equal here to 
1.29. Figures 4 (b) and (c)show the powder particles of 
the aluminum-magnesium alloy and of spherical 
aluminum. Here the coefficients k are close to unity 

(kA,+M, ;c’ 0.952, k,, 2 0.960). The particles of 

aluminum powder combine into chains resulting in 
substantial anisodiametricity of the flocculi formed 
(k = 5.298). 

Equation (8) has been used for the analysis of 
experimental data reported in [20-233 where the 
effective thermal conductivities of rubbers filled with 
powders of non-spherical particles were measured. 
The thermal conductivities of fillers were taken from 
[24, 251. Table 3 represents the basic experimental 
data from [20-231 with the values of k calculated from 
these data by the present authors. Based on the values 
of k, the parameters of the effective ellipsoid have been 
calculated: the coefficient A, along the rotation axis 
and the ratio between its long and short semi-axes. The 
results of calculations for model fillers show that the 
semi-axes ratio provides an acceptable estimate for the 
anisodiametricity degree of particles. The experimen- 
tal studies carried out confirm the applicability of 
equation (8) for determination of the thermal con- 
ductivity of compositions with anisodiametric par- 
ticles at relatively small filler volume concentrations. 
The semi-axes ratio of an effective rotation ellipsoid, 
calculated from the experimental data, provides an 
adequate qualitative characteristic of the anisodia- 
metricity degree. 

FIG. 4. Photographs of the particles of powders: (a) magnesium; (b) aluminum-magnesium alloy; (c) 
spherical aluminum; (d) aluminum powder. 
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Table 3. Results of experimental data processing based on thermal conductivity of polymer compositions 

Filler (W&K) 
Shape of c (W&K) 

inclusions Size (%) T,K 411, k A: bJa* 

[23] Copper powder 394.3 [26] non-spherical 

[24] Copper powder 394.3 [26] 

[25] Industrial diamond 629 [27] 

[25] Crystallized quartz 10.42 [27] 

[25] Corundum 28.5 [27] 

[16] Balm wood 0.045 [27] 

[16] Aluminum 207 [27] 

Magnesium 165 [27] milled Data of the present work 
Aluminum powder 207 [27] chains 

non-spherical 13 

non-spherical 
arbitrary 

irregular 

0.5-1.0 

11 

plates 6.9 

disks 

parallelepipedes 

cylinders 

50 and 
15 

1.8 

800x 
7200 

1600x 
1600x 
400 

2700 x 
270 
5000x 
1000 

10.0 
20.0 
10.0 
20.0 

13.0 
24.5 

4.8 
15.2 

10.3 
21.4 

8.0 
17.0 
7.2 

11.6 
21.3 

14.0 
25.0 

15.5 

15.5 

15.5 

0.08 
20 
0.22 
300 

0.076 
20 

0.21 
300 

0.21 
300 

0.22 
300 

1.750 
2.625 
1.9545 
4.545 

1.974 
2.632 

1.429 
2.381 

1.429 
1.952 

1.619 
2.095 
1.476 
1.905 

0.756 
0.677 

1.986 

2.165 

1.872 

1.8052 0.0842 3.68 
0.7311 4.55 

2.1256 0.0673 4.35 
0.7758 5.71 

1.5353 0.1071 3.03 
0.6758 3.54 

2.0971 0.0686 4.29 
0.7724 5.60 

1.1433 0.1522 2.25 
0.5768 2.40 

2.0915 0.0688 4.29 
0.7718 5.59 

1.8463 0.0734 4.06 
0.7535 5.09 

0.5182 0.8995 14.3 

1.5887 0.1016 3.17 
0.6886 3.75 

2.3750 0.0584 4.85 
0.8013 6.60 

1.4524 0.1171 2.82 
0.6534 3.23 
0.1436 2.36 

1.2935 0.5989 2.60 
5.2683 0.0232 9.17 

16.9 

l Upper figures correspond to an elongated ellipsoid, the lower-to a prolated one. 

1. 

2. 

3. 

4. 

5. 

6. 
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R&urn&-Une tquatian a 8th bablie thdariquement pour la canductivitC thermique effective d’un mitieu avec 
des particules de diam&e vari& On analyse en d&ail le cas de particules &ant en excts par rapport au milieu 
de liaison. On mantre la possibilit6 pour les parambtres de farme des particules de les d&-miner $ partir de 
la d@endance de la canductivitd thermique effective vis-&vis de la fraction valumique du matbiau de 
remplissage. A 6 &udZe exp&mentalement Ja conduct&S thermique effective de solutions rempiies de 
poudres mktalliques qui di&?rent en nature et en dispersion. Les cakuls s’accordent avec Ies r&&tats 

DIE WdiRMELEITFhiHIGKEIT VON MEDIEN MIT METALLFOLLWNG 

~~m~n~~ag-Es wurde theoretische eine Beziehung f&r die etTektive W~~~eitf~~gkeit eines 
Mediums abgeteitet, das Partikel tit ungleichen Durchmessern enthilt. Der Fait, bei dem die W~rrne~~t- 
fShigkeit der Partiket sehr grof.3 gegeniiber detjenigen des umschliel?euden Mediums ist, wird ausfiihrlich 
behandelt. Es wird gezeigt, wie man die Farmparameter der Partikel aus der AbhBngigkeit der effektiven 
Wtirmeleitftiigkeit vam Volumenverhiiltnis des Fdllstaffes bestimmen kann. Die effektive Wirmeleitftihig- 
keit von LBsungen, die metallische Pulver unterschiedlicher Art und Dispersian&higkeit enthielten, wurde 
experimentell untersucht. Die thearetisch berechneten Werte stimmen sufriedenstellend tit den Versuchser- 

gebnissen iiberein. 

npOBeAeH0 3KCnepaMeYJTaJtbHOe HCCJIeAOBaHNe 3@$eKTaBHOti TenJlOnpOBOnHOCTN CUCTeM, HanOn- 
HeHHbIX MeTaJlna’teCKHM ~~pol.IlKOM pa3HOti npHpOAb1 H JniCnepCHOCTH. Pe3yJlbTaTbt paC?ieTOB yAOBJIe- 

TBOpHTenbHO COrJlaCytoTCr C 3KCnepSiMeHTanbflbIMH mHHblMU. 


