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Abstract—An equation has been theoretically derived for the effective thermal conductivity of a medium with
anisodiametric particles. The case of the thermal conductivity of particles being much in excess of that of the
binding medium is analyzed in detail. The possibility is shown for the particle shape parameters to be
determined from the dependence of the effective thermal conductivity on the filler volume fraction. The
effective thermal conductivity of solutions filled with metallic powders differing in nature and dispersivity has
been studied experimentally. The predicted results agree satisfactorily with the experimental data.

NOMENCLATURE

A, depolarization factor;

a,b,c, ellipsoid semi-axes;

Ces effective metal volume fraction;

Cy volume fraction of particles of ith kind;

G, temperature gradient in the medium far
from a particle;

I, first invariant of the particle polariza-
bility tensor;

k, particle shape factor;

N, number of species of particles;

N, number of measurements;

D, significance level;

P particle dipole moment;

T, position vector;

s, r.m.s. variance;

S particle surface;

Sois surface bounding the volume V;;

to(N,), Student number;

Ty, temperature of the binding medium

Ty, temperature of dispersed particles;

T, temperature of reference medium;

AT, AT, probe temperature variation in refer-
ence and studied medium, respectively;

v, volume of the system containing suf-
ficiently large number of particles;

Ve, bulk powder volume;

Vi, particle volume;

Vois volume of the system containing the ith
particle.

Greek symbols
0

o), particle polarizability tensor
components;

Aps thermal conductivity of binding
medium;

Ags thermal conductivity of dispersed
particles;

Aes effective thermal conductivity of the
system;

Ags thermal conductivity of filled solution;

A thermal conductivity of reference
medium;

Ags thermal conductivity of solution;

Ase thermal conductivity of the medium
studied;

o bulk powder density;

P metal density;

Po solution density.

1. INTRODUCTION

CoMPOSITIONS based on resins or other viscous media
with fillers (highly dispersed metal powders) are being
widely used in different branches of engineering. The
objective of this study was to determine the de-
pendence of the effective thermal conductivity of such
suspensions upon the content of the filler whose
thermal conductivity differs substantially from that of
the medium. The results obtained can be used for both
estimation of the thermal conductivity of metallic
powders from their composition and preparation of
suspensions with a specified thermal conductivity. The
relationship between the thermal conductivity of a
suspension and its composition can also be used to
determine the filler content in suspension.

The dispersion medium of the composition studied
was a viscous solution of polyisobutylene in kerosene
which precluded filler sedimentation. The fillers were
highly dispersed metal powders differing in dispersivity
and the shape of particles. In concentrated solutions of
polymers in hydrocarbon solvents filled with metallic
powders, sedimentation is extremely slow due to a high
viscosity of the solution. Therefore the composition
can be considered uniform and isotropic. An increase
in the volume concentration of metal leads to for-
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mation by metallic particles of a branched net-like
structure actually throughout the entire composition
volume. In this case the dispersed system can be
considered conveniently as consisting of two mutally
penetrating components: solution and metal. The
properties of such systems are treated in detail in [1].

At relatively moderate volume concentrations of the
filler the composition consists of the binding medium
(solution) and randomly distributed metallic in-
clusions [1]. Although the ihermal conductivity of
metal surpasses that of the solution by several orders of
magnitude, the effective thermal conductivity of the
system, at small concentrations of metallic powder,
depends solely on the nature of the filler, i.e. volume
content, dispersivity etc., but not on the nature of the
metal itself. Usually the powder particles are covered
with an oxide film, the thermal conductivity of which is
15 or 2 orders of magnitude higher than that of the
binding medium. The screening effect of the envelope is
small and may be neglected, as shown in [2]. For the
same reason, variation of the heat conduction coef-
ficient in the boundary layer of the polymer adjacent to
the particle may also be ignored.

In liquid polymer compositions the powder par-
ticles may form flocculi consisting of several par-
ticles—the phenomenon which is conditioned by
the aggregation process. The nature of formation and
the size of flocculi have been studied in a number of
works [3-5]. It should be noted that formation of
aggregates is accompanied not only by a change in the
anisodiametric nature of inclusions, but by manifes-
tation of the following factor: the volume fraction of
particles in the aggregate exceeds the mean fraction of
dispersed phase. It has been shown in [6] that this
factor is important only in the case when the dispersed
phase volume concentration exceeds 25%.

2. CALCULATION OF THE EFFECTIVE THERMAL
CONDUCTIVITY OF SUSPENSION

In order to calculate the effective thermal con-
ductivity of a liquid polymer medium with a metallic
filler, consider a homogeneous system with the thermal
conductivity 4, containing randomly oriented aniso-
diametric inclusions with the thermal conductivity 4,
>» Ay. The effective thermal conductivity of similar
systems has been determined in a number of works
[7-9] for a wide range of the filler volume con-
centrations by isolating a unit cell from the system and
making calculations for it.

There is also a statistical method for the solution of
this problem. The effective thermal conductivity of
composition is then determined from

j'e<VT> = '{d<VTd> + ’lb<VTb>
and
(VTY = (VTy) + (YTy). (1)

Here T, and T, are the temperature fields in the
medium and in inclusions, the angled brackets denote
averages over the system volume. The temperature
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fields are found from the solution of the Laplace
equation

VTy=VT, =0 (2)
subject to the boundary conditions
Tblsurf = lesurf; AWVT, '"Isurf = A4VT, '“lsum

(3)
where n is a unit vector normal to the surface.
Let us rearrange equation (1) by means of the
formulae

1 1
VTy=53 | VTgdo= % ¢ Tyds,

® JV; U] S

1 1
<VT1,>=—J Vdev=—[Z<3€ T,dS
4 V=3aV: |4 (i) Soi

- fﬁ T,,ds>+ J VT,,dv}
S; V- vam

where V is the composition volume, V; the volume
containing the ith particle only, S,; the surface bound-
ing this volume, V', S, is the volume and surface of the
ith particle, respectively.

Equations (2) and (3) yield

Ag — Ay

S
- ‘ﬁ 7,d

where r is the position vector. Then, with account for
the above expressions we shall obtain for (1)

§ [Ff(VT, - dS) — T, dS] =
Soi

(A, — A,)(J VT, dV + Y @ T, dS)
V- Zu‘» Ve

@0 JSu

=—4 Y ® [T,dS—rVTdS)]. @)
@ Js,

When the content of particles is small, then, to
evaluate the integrals over the surfaces S,; at a distance
from the particle, we shall restrict ourselves to the
dipole expansion of the field T,

p:'r

)
r3

)

Ty=-G-r+

where p; is the dipole moment of the inclusion
determined from equations (2) and (3) subject to the
boundary condition

VT,,|,_,,,V - —G.

Since the thermal problem is linear, then

3
p=V Z ki) e (6)

kn=1
where a? is the particle polarizability tensor [10], e,
are the unit vectors.
Taking into account the random orientation of
particles
1
{cos? a) = {cos® B> = {cos*y) = 3
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where a, 8, y are the angles between the principal axes
of the inclusion polarizability tensor and the tempera-
ture gradient, will yield

Ao — Ay Y4 1
== —-nl.c.

e 424, SS9

Here, the summation is taken over the N types of

inclusions, ¢; is the volume concentration of the jth
inclusion,

™)

3
- i
L= 3% o
k=1

is the first invariant of the tensor o, : I; > Oat A, > 4y
I; < 0at Ay < 4, When A4 >» Ay and A « 4y, thevalue
of |I;| is independent of A4 and is determined only by
the shape of inclusions. At N = 1, equation (7) is
reduced to the Maxwell-type relation

}“e - }'b
Ae + 24,

in which ¢ is the volume content of particles.
The coefficient k allows for non-sphericity of a
particle. Equation (8) holds also for inclusions of the

same nature but of different shape. In this case the
averaged polarizability tensor invariant is equal to

N
I=3% pl,
i=1

where p; are the fractions of particles of dissimilar

shapes. For particles of ellipsoidal shape the polariz-
ability tensor is presented in [10]

kels Ak

9.1 Ay + (Ag — 404,

where A, are the depolarization factors, For spheres

= ke, k=gnl, ®)

©)

with 4, = { the well known Maxwell formula is
obtained:
T A+ 24

Equation (8) with the coefficient (9) coincides with a
similar equation for dielectric penetration obtained in
[11, 12] where the mutual effect of particles is accoun-
ted for by the Lorentz formula for interaction of
induced point dipoles. The technique of deriving
equation (8) used in the present work makes it possible
to avoid application of the comparison method em-
ployed by Polder, Van Santen and Fricke. In the
derivation of equation (8) it is assumed that the centres
of inclusions are uniformly distributed throughout the
composition and, therefore, the form of the correlation
function for mutual arrangement of particles is not
taken into account. Buevich and co-workers [13] have
developed the methods for calculation of the effective
characteristics of composition—viscosity and thermal
conductivity—with regard for the binary function of
inclusions. Numerical calculations made for spherical
particles [14] have shown that the effective thermal
conductivity of composition at ¢ < 0.3 is weakly

HMT 28:5 - O
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dependent upon the form of the binary distribution
function.

Based on Fricke’s equation [15] for a dispersed
medium with ellipsoidal inclusions,

3 Ag— 4
le~lb=§‘z d L

2 T e a, ol T A Al

(10)

Hamilton [16] has suggested an empirical relationship
for thermal conductivity of the medium with inclusions
Ao — A Ag— A
b —c- d b an
Ao +{n— 1)y Ag + (n— D4,

where n is the empirical coefficient accounting for the
anisodiametricity of inclusions. An equation similar to
(11) is used to calculate the electrical conductivity of
liquid disperson systems [17], with n determined from
experimental data. For 4; « 4, and 1, >» 4, we have

- bk € . A< Ays
Ae +{n — 1A, n—1
A—Zb
B T2 e, Ay Ay 12
B i— Dy O e (12)

Comparison of equations (8) and (12) with the
Maxwell formula shows:

Ae_}*b

Ac_’_ub—c, Ag > Ay

Ao — 2y c

< = —= Age

i 7 <A 13

It is seen from (8) and (13) that in (8) anisodia-
metricity leads to a change in the effective volume
fraction of anisodiametric particles by k times at A, »
Jyand by 2k times at 1, « A, as compared with similar
volume content of spherical inclusions. In equation
(12), in contrast to (8), an increase in the effective
thermal conductivity of the composition involving
anisodiametric particles, as compared with the same
content of spherical particles, is associated with a (n —
1)/2-fold increases in the effective thermal conductivity
of the medium at A, » 4, while at A, « A,—also with
an (n — 1)/2-fold decrease of the effective filler volume.
Physically this interpretation is incorrect.

In the case of randomly oriented inclusions their
shape can be modelled by an effective axisymmetric
ellipsoid. The coefficient k is determined by equation
{8) from the experimental data. Then, with the use of
equation (9), one can determine the relationship
between the ellipsoid semi-axes. The depolarization
factors A, can be calculated from [10]:

L—e*/ 1
A, = 2e3e (ln +e—2e>,

b2
e =\/<l——2), a>b=c;
a
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1 2
Ay = +3e (e — arctge),
e
bz
“J(If 1)
b=c>a (14)

Here b, a, ¢ are the ellipsoid semi-axes, 4, = (a —
A))2, A = A,

Figure 1 shows the dependence of the coefficient k
upon the ellipsoid shape for different relationships
between thermal conductivities of the dispersed, A,,
and binding, 4,, media.

The study of the effect of the shape of inclusions on
polarizability has been carried out in [17]. The
experiments have shown that polarizability is de-
termined, in the main, by the relationship between the
length of the particle axes rather than the particle
shape.

The author of [18] has suggested that the re-
lationship between the semi-axes of an equivalent
ellipsoid be determined by measuring dielectric per-
mittivity of the dispersion system.

3. ANALYSIS OF EXPERIMENTAL DATA

Thermal conductivity of filled polymer compositions
has been measured by the constant-power probe
method [20-22] in view of certain features of the
system under study: high viscosity, poor wettability,
slow structure formation processes in the medium. The
probe in the form of a thin needle was immersed into
the medium. After turn-on of the heater a change of the
probe temperature in time has been recorded. The
measurements are made over a quasi-stationary heat-
ing length. A relative version of this method is used
when the rates of heating of two identical probes
immersed into the studied and reference media are
compared. Identical electric power is supplied to the
probes. The ratio between the thermal conductivities
of the medium studied 4, and of the reference medium
A, is determined from

Ag _

AT,
4 AT, (15)

where AT, and AT, are temperature changes in the
reference and studied media. For optimization of the
measurement technique the thermal conductivities of
hydrocarbon liquids thickened with 5.7 and 159 of
polyisobuthelene (PIB) have been determined. The
reference medium was a pure solvent. The confidence
interval for the thermal conductivity A was determined
[19] from

TNy = e < A < D £ (N, — 1) =

I, N

2 1 S
P ¥ (k-

2,
VW, = 1) 5 )
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Fi. 1. Dependence of the coefficient k& upon the shape of
ellipsoid for different thermal conductivity ratios of dispersed
A4 and binding 4, media.

where

I= (::V:l A,.) /Nu, 1,(N,)

is the Student number for the significance level p =
0.05 for N, measurements, s is the r.m.s. variance. The
analysis of the preliminary experiments and statistical
treatment of the results obtained allowed the develop-
ment of the technique of thermal conductivity
measurement. The measurements have shown that the
thermal conductivity of the solution is actually inde-
pendent of the PIB content (¢ = 5%, A =
0.114 WyMK, ¢ = 7%, 4, = 0.112 Wt/MK, ¢ = 15%,
A, = 0.112Wt/MK) which is in accord with the
reported data proving near coincidence between the
thermal conductivities of pure solvents and PIB
[27, 28]
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Table 1. Characteristics of powders

P 1073 p;-1073 V(cm3) c c,

No. kg/m® kgm®  p./p min max min max min max
1 1.74 0.58 328 12.8 89.8 0.037 0.324 0.049 0453
2a 2.15 0.69 312 135 80.9 0.042 0.350 0.121 0.394

b 1.10 1.95 10.0 60.0 0.049 0.491 0.065 0.448
3a 2.74 0.75 3.65 12.6 25.2 0.056 0.126 0.034 0.095
b 0.80 343 18.8 61.5 0.056 0.245 0.013 0.242
c 095 2.88 15.8 530 0.056 0.254 0.034 0.258
d 1.18 232 10.0 50.2 0.042 0.328 0.026 0.284

4 274 0.18 15.22 10.0 276.0 0.006 0.244 0.088 0.670

5 5.25 0.55 9.54 10.0 72.7 0.009 0.102 0.016 0.097

The above technique has been used to measure the
thermal conductivity of solutions filled with metallic
powders. The solutions were hydrocarbon liquids,
with close thermal conductivities, into which 10%, of
PIB had been added. The powders were : (1) milled
magnesium; (2) two fractions of the aluminum-
magnesium alloy; (3) four fractions of spherical alu-
minum; (4) aluminum powder, and (5) gamma-iron
oxide (Table 1). The granulometric composition of the
powders is presented in Fig. 2. The densities of

(a)
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solutions are almost the same and equal to p, =
900 kg/m>3. The measurements were carried out for
different bulk volumes V; of powders per 0.1 kg of
composition. The volume content of metal is found
from

c= (0e/0w) Vi
(0e/p)Ve + (0.1 — peVi)/p, ’

(16)

Here p; is the bulk density of powder and p,, is the

(b)
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F1G. 2. Granulometric composition of powders: (a) magnesium; (b) magnesium with aluminum; (c)
aluminum powder (solid line); 2, spherical aluminum.
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metal density. The effective volume content of metal is
calculated from the experimental data by

Ui =1
T /A)+2

where A¢//, is the ratio of thermal conductivities of the
filled, A;, and pure, 4,, solutions. The value of c, is
numerically equal to the volume fraction of well
conducting particles (A4/A, > 1) the addition of which
results, according to (8), in the value of Ay/A, de-
termined experimentally.

Table 1 presents the densities p;, p,, and ranges of
values V;, ¢, ¢, observed in experiments. The re-
lationship between the quantities ¢ and ¢, is described
by the regressive equation

(17)

Ce=n+ mc. (18)

In view of the fact that the Maxwell formula is
applicable to spherical particles at small volume
contents of the dispersed phase, the linear equation
(18) for aluminum powder was obtained from the data
for ¢, < 0.35. Over the whole range of experimental
data the quantities ¢, and ¢ are related through

c, = 0.049 + 4.568¢ — 8.284¢2.

Further analysis of the significance of coefficients n,
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m[19] in equation (18) has shown that the free term n
can be neglected, i.c. an equation of the type (8) can be
obtained

(19)

Figure 3 shows the curves of (19), experimental
points and the values of the coefficient k for mag-
nesium, aluminum and gamma-iron oxide.

All of the above compositions consist of two com-
ponents: solution and powder of one metal. We have
analyzed the possibility for calculation of the effective
thermal conductivity of the system consisting of three
components: solution, aluminum powder and
gamma-iron oxide powder. The thermal conductivity
has been calculated by equation (17) at

[ CJ\'»,. + CAlkAh (20)

where ¢, ¢4, are the volume contents of the gamma-
iron oxide and aluminum powder, k. and k,, are their
coefficients. The results of calculations prove the
applicability of this equation (see Table 2). The
experiments carried out confirm the applicability of
equations (17) and (20) for determination of the
effective thermal conductivity of polymer solutions
filled with metallic powders at volume contents ¢, <
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FiG. 3. Dependence of ¢, upon c¢: (a) magnesium, k = 1.294; (b) aluminum-magnesium, k ~ 0.952; (¢)
spherical aluminum, k ~ 0.960; (d) aluminum powder, k ~ 5.268; (¢) gamma-iron oxide, k x 1.000.
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Table 2. Three-component system (kg = 1.00,k,; = 4.11)

No. Cre. Cap ceP cbred
1 0.0101 0.0127 0.0566 0.0630
2 0.0213 00134 0.0567 0.0776
3 0.0332 0.0069 0.0446 0.0637
4 0.0337 0.0141 0.0991 0.0938
5 0.0342 0.0214 0.1525 0.1245
6 0.0468 0.0073 0.0566 0.0799
7 0.0475 0.0149 0.1045 0.1118
8 0.0483 0.0227 0.1573 0.1446
9 0.0630 0.0158 0.1279 0.1320
10 0.1641 0.0241 01620 0.1670

0.35. In the case of powders 2, 3, 5, with particles close
in shape to the spherical one, k ~ 1.

Figure 4 shows the photographs of the powder
particles of magnesium, aluminum-magnesium alloy,
first fraction of spherical aluminum and aluminum
powder. The magnesium particles are of distinct
anisodiametric nature (Fig. 4a). The coefficient k&
calculated from the experimental data is equal here to
1.29. Figures 4 (b) and (c) show the powder particles of
the aluminum-magnesium alloy and of spherical
aluminum. Here the coefficients k are close to unity
Karemg = 0952, ky, ~ 0960). The particles of
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aluminum powder combine into chains resulting in
substantial anisodiametricity of the flocculi formed
(k = 5.298).

Equation (8) has been used for the analysis of
experimental data reported in [20-23] where the
effective thermal conductivities of rubbers filled with
powders of non-spherical particles were measured.
The thermal conductivities of fillers were taken from
[24, 25]. Table 3 represents the basic experimental
data from [20-23] with the values of k calculated from
these data by the present authors. Based on the values
of k, the parameters of the effective ellipsoid have been
calculated: the coefficient 4, along the rotation axis
and the ratio between its long and short semi-axes. The
results of calculations for model fillers show that the
semi-axes ratio provides an acceptable estimate for the
anisodiametricity degree of particles. The experimen-
tal studies carried out confirm the applicability of
equation (8) for determination of the thermal con-
ductivity of compositions with anisodiametric par-
ticles at. relatively small filler volume concentrations.
The semi-axes ratio of an effective rotation ellipsoid,
calculated from the experimental data, provides an
adequate qualitative characteristic of the anisodia-
metricity degree.

FiG. 4. Photographs of the particles of powders: (a) magnesium; (b) aluminum-magnesium alloy; (c)
spherical aluminum; (d) aluminum powder.
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Table 3. Results of experimental data processing based on thermal conductivity of polymer compositions

Z. P. SHULMAN et al.

A

A, Shape of ¢ (WyMK)
Filler (Wt/MK) inclusions Size (%) T,K Ac/A, k At bja*
[23] Copper powder 3943 [26] non-spherical 50and 100 0.8 1.750 1.8052 00842  3.68
15 200 20 2,625 0.7311  4.55
10,0 022 1.9545 2.1256 0.0673  4.35
200 300 4.545 0.7758 571
[24] Copper powder  394.3 [26] non-spherical 13 130 0076 1.974 1.5353 01071  3.03
245 20 2632 0.6758 3.54
[25] Industrial diamond 629 [27] non-spherical 05-10 48 021 1.429 20971 0.0686  4.29
arbitrary 152 300 2.381 07724 560
[25] Crystallized quartz 1042 [27] irregular 11 103 021 1429 1.1433 01522 225
214 300 1.952 0.5768 240
[25] Corundum 28.5[27] plates 6.9 8.0 1.619 20915 0.0688  4.29
17.0 2.095 0.7718 5.59
7.2 1.476 1.8463 00734  4.06
18 11.6 1.905 0.7535  5.09
213
[16] Balm wood 0.045 [27] disks 800 x 140 022 0756  —0.5182 08995 143
7200 250 300 0.677
[16] Aluminum 207 [27] parallelepipedes 1600 x 1.986 1.5887 0.1016  3.17
1600x 155 0.6886 375
400
cylinders 2700x 155 2.165 23750 0.0584  4.85
270 08013  6.60
5000x 155 1.872 14524 01171 2.82
1000 0.6534 323
01436 236
Magnesium 165 [27] milled Data of the present work 1.2935 0.5989  2.60
Aluminum powder 207 [27] chains 52683 0.0232 917
16.9

* Upper figures correspond to an elongated ellipsoid, the lower—to a prolated one.
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CONDUCTIVITE THERMIQUE DES SYSTEMES A REMPLISSAGE METALLIQUE

Résumé-—Une équation a été établie théoriquement pour la conductivité thermique effective d’un milieu avec

des particules de diamétre varié. On analyse en détail le cas de particules étant en excés par rapport au milieu

de liaison. On montre la possibilité pour les paramétres de forme des particules de les déterminer 4 partir de

la dépendance de fa conductivité thermique effective vis-a-vis de la fraction volumique du matériau de

remplissage. A été étudiée expérimentalement la conductivité thermique effective de solutions remplies de

poudres métalliques qui différent en nature et en dispersion. Les calculs s'accordent avec les résultats
expérimentaux.

DIE WARMELEITFAHIGKEIT VON MEDIEN MIT METALLFULLUNG

Zusammenfassung—Es wurde theoretische eine Bezichung fiir die effektive Wirmeleitfihigkeit eines
Mediums abgeleitet, das Partikel mit ungleichen Durchmessern enthilt. Der Fali, bei dem die Wirmeleit-
fahigkeit der Partikel sehr groB gegeniiber derjenigen des umschlieBenden Mediums ist, wird ausfiihrlich
behandelt. Es wird gezeigt, wie man die Formparameter der Partikel aus der Abhéngigkeit der effektiven
Wiirmeleitfahigkeit vom Volumenverhéltnis des Fiillstoffes bestimmen kann. Die effektive Wirmeleitfahig-
keit von Lésungen, die metallische Pulver unterschiedlicher Art und Dispersionsfihigkeit enthielten, wurde
experimentell untersucht, Die theoretisch berechneten Werte stimmen zufriedenstellend mit den Versuchser-
gebnissen dberein.

TENMJIONPOBOAHOCTh METAJIJIOHAIIOJHEHHBIX CUCTEM

Aunoraums - [Tpusenien Teoperwueckuil sbinoj GOpMyRs! Ans SbPEXTHBHON TENNONPOBOAHOCTH
cpeasl ¢ amMsoAHamMeTpudeckuMu wsactruamy. IlonpobHo npoamanwswposan cayyail, korma Temso-
NIPOBOAHOCTD 4HacCTHIl 3HAYHUTC/ILHC NPEBHINACT TCHNONPOBCOJHOCTL cBsayiowiedl cpeant. Ioxazama
BOIMOXHOCTS ONPENENEHHS NapaMeTPoR (OPMBI YacTHHBL O 3aBHCHMOCTH dDdeKTHBHON Temno-

MPOBOJHOCTH OT 06 beMHOI JONIK HAMTOJHUTENS.

TMposeneHo 3KCNEPUMEHTAIBHOE HCCIENOBANME SbdEKTHBHON TENNONPOBOAHOCTH CHCTEM, HAMOJN-
HEHHBIX METAILINYECKHM [IOPOLUKOM Pa3HOR NPHPOMILI M TUCIEPCHOCTH. Pe3yabTaThl pacueToB yAoBIE-
TBOPHTEJILHO COTTIACYIOTCH C IKCHEPHMEHTATILHBIMA JAHHBIMH,



